Abstract

AbstractA parallel automated track collector is integrated with a rationally designed centrifugal spinning head to collect aligned polyacrylonitrile (PAN) nanofibers. Centrifugal spinning is an extremely promising nanofiber fabrication technology due to high production rates. However, continuous oriented fiber collection and processing presents challenges. Engineering solutions to these two challenges are explored in this study. A 3D‐printed head design, optimized through a computational fluid dynamics simulation approach, is utilized to limit unwanted air currents that disturb deposited nanofibers. An automated track collecting device has pulled deposited nanofibers away from the collecting area. This results in a continuous supply of individual aligned nanofibers as opposed to the densely packed nanofiber mesh ring that is deposited on conventional static post collectors. The automated track collector allows for simple integration of the postdraw processing step that is critical to polymer fiber manufacturing for enhancing macromolecular orientation and mechanical properties. Postdrawing has enhanced the mechanical properties of centrifugal spun PAN nanofibers, which have different crystalline properties compared with conventional PAN microfiber. These technological developments address key limitations of centrifugal spinning that can facilitate high production rate commercial fabrication of highly aligned, high‐performance polymer nanofibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call