Abstract
The dry reforming of methane (DRM) is a new potential technology that converts two major greenhouse gases into useful chemical feedstocks. The main challenge faced by this process is maintaining the catalyst with high catalytic activity and long-term stability. Here, a simple and effective preparation route for the synthesis of functional nanomolecular sieve catalysts (NiRuxCZZ5) from kaolinite tailings was developed for dry reforming of methane with CO2. The silica monoliths with flower-like spherical and micropore structures (ZSM-5) were prepared by crystal growth method, and the metal components were loaded by ultrasonic-assisted impregnation method. The NiRu0.5CZZ5 catalyst exhibited excellent catalytic performance (maxmium CO2 and CH4 conversions up to 100 and 95.6%, respectively) and very good stability (up to 100h). The interfacial confinement and the strong support interaction are principally responsible for the excellent catalytic activity of the catalyst. The in situ DRIFTS was used to elucidate the possible carbon conversion steps, and stable surface intermediates were also identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.