Abstract

Highly active N, O-doped hierarchical porous carbons (NOCs) are fabricated through the in-situ polymerization and pyrolysis of o-tolidine and p-benzoquinone. As-prepared NOCs have a variety of faradaic-active species (N-6, N-5 and O-I), high ion-accessible platform (1799 m2/g) and hierarchically micro–meso–macro porous architecture. Consequently, the resultant NOC electrode delivers an advantageous specific capacitance (311 F/g), with a pseudocapacitive contribution of 37% in a three-electrode configuration, and an enhanced energy output of 18.0 Wh/kg @ 350 W/kg owing to the enlarged faradaic effect in an aqueous redox-active cell. Besides, a competitive energy density (74.9 Wh/kg) and high-potential durability (87.8%) are achieved in an ionic liquid (EMIMBF4)-assembled device. This study sheds light on a straightforward avenue to optimize the faradaic activity and nanoarchitecture for advanced supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.