Abstract

Hammerhead (HH) ribozymes can be used for highly specific inhibition of gene expression through the degradation of target mRNA. In vitro experiments with minimal HH domains demonstrated that the efficiency of catalysis is highly dependent on concentration of magnesium ions. Optimal ion requirements for HH-catalysed RNA cleavage are far from these found in the cell. Recently, it has been proposed that the efficiency of HH ribozymes can be increased at low magnesium concentration through stabilization of a catalytically active conformation by tertiary interactions between helices I and II. We designed a ribozyme stabilized by GAAA tetraloop and its receptor motifs and demonstrated that it can efficiently catalyse target RNA hydrolysis at submillimolar Mg(2+) concentrations in vitro as well as in cultured cells. Both unmodified and locked nucleic acid-modified extended ribozymes proved superior to the minimal core ribozyme and DNAzyme against the same target sequence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call