Abstract

A method for fabricating nanostructured biocatalysts using bioconjugate block copolymer self-assembly is demonstrated, yielding very high protein loadings and activity per unit area, compared to more-established enzyme encapsulation methods. Self-assembled heterogeneous biocatalysts are fabricated by flow coating myoglobin-b-poly(N-isopropylacrylamide) (myoglobin-PNIPAM) block copolymers onto solid supports, and films are stabilized by lightly cross-linking with glutaraldehyde. The conjugates form weakly ordered, nonbirefringent micellar and lamellar assemblies in concentrated solution and disordered but micro-phase-separated structures in thin solid films. The low diffusion resistance in the bioconjugate film imparted by the water-swollen PNIPAM nanostructures, the high enzyme density within the film, and high retention of protein activity results in extremely high catalytic activity: 5-10 times greater than catalysts fabricated using other well-established methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call