Abstract
Single-atom catalysts (SACs) can achieve ultimate atomic utilization of precious metals to improve water splitting’s economy. However, active sites in SACs are usually insufficient. Therefore, we propose the use of porous Co1NC which is rich in defects as support to prepare Pt1/Co1NC by mild electrochemical reduction at room temperature. Pt1/Co1NC showed record-high hydrogen evolution reaction (HER) activity, with an overpotential of only 4.15 mV at a current density of 10 mA cm−2. Its mass activity reached 32.4 A mg−1Pt at an overpotential of 20 mV, which is 54 times that of Pt/C. The turnover frequency was up to 32.86 s−1 at 20 mV, with excellent stability in long-term service. Our strategy suggests that nitrogen/carbon defects are vital for anchoring&forming monodispersed Pt active sites while preventing agglomeration. These sites possess low energy barriers, as verified by theoretical simulations. Therefore, our method presents a technical breakthrough for reducing cost of hydrogen energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.