Abstract
Evaluation of the hemilability of hybrid ligands provides a key to understand the metal-ligand cooperation in transition metal catalysis. Here, we design and synthesize a type of RuII complexes based on the hemilability of N-heterocyclic carbenes (NHCs), pyridine, and pyrazole, to compare their activity with other reported Ru catalysts in benzylic C-H oxidation. The RuII catalysts showed ultrastrong catalytic activity in water at room temperature and achieved a turnover frequency (TOF) of 114 h-1, which is the highest TOF value ever reported for Ru-catalyzed benzylic C-H oxidation. The addition of tridentate hybrid ligands in the Ru central position has two beneficial effects: NHCs with a stronger donor ability stabilize the Ru center; however, nitrogen ligands with a relatively weaker donor ability release from the Ru center, so that they induce a reaction. UV-vis, high-resolution electrospray ionization mass spectrometry (ESI-MS), electron paramagnetic resonance (EPR) spectrometry, the trapping of radicals, and the density functional theory calculations (DFT) suggested that a cation catalyst L-RuII-tBuO2H is formed via the reaction between starting RuII catalysts and tert-butyl hydroperoxide, which further undergoes a cleavage of the O-O bond to generate a radical and a cation L-RuIII-OH active intermediate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.