Abstract
Highly active and durable electrocatalysts for oxygen evolution reaction (OER) play significant roles in renewable energy technologies such as water electrolysis and metal-air battery. Here we report a simple and effective strategy to improve the OER electrocatalytic performances of a high-entropy perovskite La(CrMnFeCo2Ni)O3 (LaB2Co) by A-site acceptor doping. A series of La1–xCaxB2Co (0 ≤ x ≤ 0.4) was prepared, and their electrocatalytic activity and stability towards OER in 1 M KOH solution were investigated. Results show that the OER overpotential (at 10 mA cm–2) decreases with increasing doping level from 386 mV for x = 0 to 340 mV for x = 0.4. The optimum composition, La0.6Ca0.4B2Co, also exhibits excellent long-term stability that the potential at 10 mA cm–2 varies less than 20 mV in 200 h. The prominent OER activity of La0.6Ca0.4B2Co is attributed to the presence of high-level oxygen vacancies, as well as rich oxidation states of the active elements on the surface of the perovskite. The superior OER durability is beneficial from the high configurational entropy, which provides sufficient active sites during durability tests. Findings from this work prove that acceptor doping is an effective strategy to improve the activity and durability of perovskite-type high-entropy oxides as OER electrocatalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.