Abstract

Oxygen evolution reaction (OER) catalyzed by Ru/Ir-free electrocatalysts is pivotal for preparing oxygen in efficient way, yet our understanding of the relationship between microphysical properties and OER performance is still insufficient. Here we report on 41 kinds of FexCuyNi1-x-y/FeOOH/NiOOH/CuO complexes (FCN-x) to investigate the Cu and Fe induced electronic perturbation and what it brings to OER performance. As result, the activity mapping of FCN-x shows an optimal composition of 1:2:7 (FCN-7) showing a comparable overpotential potential of 170.3 mV, Tafel slop of 75.9 mV dec−1 and durability of 24 h (∼29% activity loss) to that of mainstream Ru/Ir-free catalysts. Such enhancement could be attributed to the role of alloying contribution of Fe/Cu, electronic perturbation and surface modification of surface oxides. Additionally, the incompletely oxidized FexCuyNi1-x-y not only provide a platform for electron conduction, but also work as a sacrificial material to forming fresh oxides to maintain the content of surface oxides, which is a key driver of the excellent durability of FCN-7. This synthetic strategy may give an effective way to design and screen Ru/Ir-free OER catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call