Abstract

This paper presents a new method for calculating the numerical solution of distributed-order time-fractional-sub-diffusion equations (DO-TFSDE) of fourth order. The method extends the shifted fractional Jacobi (SFJ) collocation scheme for discretizing both the time and space variables. The approximate solution is expressed as a finite expansion of SFJ polynomials whose derivatives are evaluated at the SFJ quadrature points. The process yields a system of algebraic equations that are solved analytically. The new method is compared with alternative numerical algorithms when solving different types of DO-TFSDE. The results show that the proposed method exhibits superior accuracy with an exponential convergence rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call