Abstract

Owing to the lack of specific diagnostic methods, Scrub typhus can sometimes be difficult to diagnose in the Asia-Pacific region. Therefore, an efficient and rapid detection method urgently needs to be developed. Based on competitive single-stranded DNA over modified glassy carbon electrode (GCE), an electrochemical biosensor was established to detect the disease. The nano-flower NiFe layered double hydroxide (NiFe-LDH) modified GCE has a large specific surface area, which supported a large amount of gold nanoparticles, so that a wide linear detection range from 25 fM to 0.5 μM was obtained. The beacon DNA (B-DNA) with the same sequence as the Scrub typhus DNA (T-DNA), but labeled with methylene blue, was used to construct a competitive relationship. When T-DNA and B-DNA were present on the sensor simultaneously, they would hybridize with probe DNA in a strong competition, and the corresponding electrochemical response signal would be generated via testing. It contributed to reducing tedious experimental procedures and excessive response time, and achieved fast electrochemical detection of DNA. The strategy provides a worthy avenue and possesses promising applications in disease diagnosis.

Highlights

  • Scrub typhus is an acute infectious disease caused by Orientia tsutsugamushi, which is harmful to human health

  • 20 μL of diluted P1 was directly incubated onto the Au/NiFe-LDH/glassy carbon electrode (GCE) at room temperature for 4 h

  • After washing with 10 mM phosphate buffer containing NaH2PO4 and Na2HPO4 (10 mM PBS, pH 7.0), 1 mM MCH was added on the P1/Au/NiFe-LDH/GCE and incubated for 1 h to seal the remaining unbound active sites on AuNPs

Read more

Summary

Introduction

Scrub typhus is an acute infectious disease caused by Orientia tsutsugamushi, which is harmful to human health. This disease is transmitted to humans through chigger mite bites, and it is endemic in the Asia-Pacific region [1]. The commonly used method for specific early molecular detection for O. tsutsugamushi is based on polymerase chain reaction (PCR) detection technology [2,3]. This strategy was used to detect the sequences of Sta of O. tsutsugamushi in the early stage [4]. Sensitive and selective detection of nucleic acids, biomolecules, and proteins at low physiological levels is substantially important in life sciences [5,6,7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.