Abstract

Enzyme-free isothermal amplification reactions for nucleic acid analysis usually take several hours to obtain sufficient detection sensitivity, which limits their practical applications. Herein, we report a butanol dehydration-based method to greatly improve both the efficiency and the sensitivity of nucleic acid detections by three types of enzyme-free isothermal amplification reactions. The reaction time has been shortened from 3 h to 5-20 min with higher sensitivities. Especially in the DNAzyme-based amplification, the detection limit can be lowered over 16 000-fold to 3 × 10-17 mol L-1 in 2 h compared to the normal 3 h-reaction. We demonstrate that the high amplification efficiencies are attributed to the greatly accelerated reaction rates in the extremely concentrated reaction solutions caused by the butanol dehydration. This approach enhances the potential of applications of isothermal amplification reactions in clinical rapid tests, nanostructure synthesis, etc. and is promising to expand to other types of chemical reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.