Abstract

Hadron spectroscopy provides a way to understand the dynamics of the strong interaction. For light hadron systems, only phenomenological models or lattice quantum chromodynamics (QCD) are applicable, because of the failure of perturbation expansions for QCD at low energy. Experimental data on light hadron spectroscopy are therefore crucial to provide necessary constraints on various theoretical models. Light meson spectroscopy has been studied using charmonium decays with the Beijing Spectrometer Experiment (BES) at the Beijing Electron-Positron Collider, operating at 2.0–4.6 GeV center-of-mass energy, for nearly three decades. Charmonium data with unprecedented statistics and well-defined initial and final states provide BESIII with unique opportunities to search for glueballs, hybrids and multi-quark states, as well as perform systematic studies of the properties of conventional light mesons. In this article, we review BESIII results that address these issues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.