Abstract
Carbon dioxide (CO2) is the iconic greenhouse gas and the major factor driving present global climate change, incentivizing its capture and recycling into valuable products and fuels. The 6H+/6e- reduction of CO2 affords CH3OH, a key compound that is a fuel and a platform molecule. In this Review, we compare different routes for CO2 reduction to CH3OH, namely, heterogeneous and homogeneous catalytic hydrogenation, as well as enzymatic catalysis, photocatalysis and electrocatalysis. We describe the leading catalysts and the conditions under which they operate, and then consider their advantages and drawbacks in terms of selectivity, productivity, stability, operating conditions, cost and technical readiness. At present, heterogeneous hydrogenation catalysis and electrocatalysis have the greatest promise for large-scale CO2 reduction to CH3OH. The availability and price of sustainable electricity appear to be essential prerequisites for efficient CH3OH synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.