Abstract

The development of wound dressing materials with appropriate specifications is still a challenge to overcome the current limitations of conventional medical bandages. In this regard, simple and fast methods are highly recommended, such as film casting. In addition, deliverable nanoparticles that can act to accelerate wound integration, such as samarium oxide (Sm2O3) and magnesium oxide (MgO), might represent a potential design with a novel compositional combination. In the present research, the casted film of cellulose acetate (CA) was mixed with different ratios of metal oxides, such as samarium oxide (Sm2O3) and magnesium oxide (MgO). The tests used for the film examination were X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The SEM graphs of CA films represent the surface morphology of Sm2O3@CA, MgO@CA, and Sm2O3/MgO/GO@CA. It was found that the scaffolds' surface contained a high porosity ratio with diameters of 1.5-5 µm. On the other hand, the measurement of contact angle exhibits a variable trend starting from 27° to 29° for pristine CA and Sm2O3/MgO/GO@CA. The cell viability test exhibits a noticeable increase in cell growth with a decrease in the concentration. In addition, the IC50 was determined at 6 mg/mL, while the concentration of scaffolds of 20 mg/mL caused cellular growth to be around 106%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.