Abstract

Enzymes are key proteins performing the basic functional activities in cells. In humans, enzymes can be also responsible for diseases, and the molecular mechanisms underlying the genotype to phenotype relationship are under investigation for diagnosis and medical care. Here, we focus on highlighting enzymes that are active in different metabolic pathways and become relevant hubs in protein interaction networks. We perform a statistics to derive our present knowledge on human metabolic pathways (the Kyoto Encyclopaedia of Genes and Genomes (KEGG)), and we found that activity aldehyde dehydrogenase (NAD(+)), described by Enzyme Commission number EC 1.2.1.3, and activity acetyl-CoA C-acetyltransferase (EC 2.3.1.9) are the ones most frequently involved. By associating functional activities (EC numbers) to enzyme proteins, we found the proteins most frequently involved in metabolic pathways. With our analysis, we found that these proteins are endowed with the highest numbers of interaction partners when compared to all the enzymes in the pathways and with the highest numbers of predicted interaction sites. As specific enzyme protein test cases, we focus on Alpha-Aminoadipic Semialdehyde Dehydrogenase (ALDH7A1, EC 2.3.1.9) and Acetyl-CoA acetyltransferase, cytosolic and mitochondrial (gene products of ACAT2 and ACAT1, respectively; EC 2.3.1.9). With computational approaches we show that it is possible, by starting from the enzyme structure, to highlight clues of their multiple roles in different pathways and of putative mechanisms promoting the association of genes to disease.

Highlights

  • It is common knowledge that enzymes are proteins characterized by specific molecular functions that, when performed in a concerted manner, give rise to the richness of biological processes at the basis of the cell complex physiology [1]

  • By associating functional activities (EC numbers) to enzyme proteins, we found the proteins most frequently involved in metabolic pathways

  • As specific enzyme protein test cases, we focus on Alpha-Aminoadipic Semialdehyde Dehydrogenase (ALDH7A1, EC 2.3.1.9) and Acetyl-CoA acetyltransferase, cytosolic and mitochondrial

Read more

Summary

Introduction

It is common knowledge that enzymes are proteins characterized by specific molecular functions that, when performed in a concerted manner, give rise to the richness of biological processes at the basis of the cell complex physiology [1]. Each enzyme is a protein molecule endowed with a specific four-digit EC number [6], which fully describes the catalyzed biochemical reaction, and possibly with an atomic solved structure, routinely available in the Protein Data Bank (PDB), [7]. This allows for an understanding of the relationship between

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call