Abstract

Cytosolic insect theta class glutathione S-transferases (GSTs) have not been studied completely and their physiological roles are unknown. A detailed understanding of Anopheles gambiae GST (Aggst1-2) requires an accurate structure, which has not yet been determined. A high quality model structure of Aggst1-2 was constructed using homology modeling and the ligand-protein complex was obtained by the docking method. Molecular dynamics (MD) simulations were carried out to study conformational changes and to calculate binding free energy. The results of MD simulation indicate that Aggst1-2 undergoes small conformational changes after ligands dock to the protein, which facilitate the catalytic reaction. An essential hydrogen bond was found between the sulfur atom of glutathione (GSH) and the hydrogen atom of hydroxyl group in Ser9, which was in good agreement with experimental data. A π-π interaction between Phe204 and CDNB ligand was also found. This interaction seems to be important in stabilization of the ligand. Further study of binding free energy decomposition revealed a van der Waals interaction between two ligands that may play a key role in nucleophilic addition reaction. This work will be a good starting point for further determination of the biological role of cytosolic insect theta class GSTs and will aid the design of structure-based inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.