Abstract

Field-Programmable Gate Arrays (FPGAs) are increasingly employed in both high-performance computing and embedded systems due to performance and power advantages compared to microprocessors. However, widespread usage of FPGAs has been limited by increased design complexity. Highlevel synthesis has reduced this complexity but often relies on inaccurate software simulation or lengthy register-transfer-level simulations for verification and debugging, which is unattractive to software developers. In this paper, we present high-level synthesis techniques that allow application designers to efficiently synthesize ANSI-C assertions into FPGA circuits, enabling real-time verification and debugging of circuits generated from highlevel languages, while executing in the actual FPGA environment. Although not appropriate for all systems (e.g., safety-critical systems), the proposed techniques enable software developers to rapidly verify and debug FPGA applications, while reducing frequency by less than 3% and increasing FPGA resource utilization by less than 0.13% for several application case studies on an Altera Stratix-II EP2S180 using Impulse-C. The presented techniques reduced area overhead by as much as 3x and improved assertion performance by as much as 100% compared to unoptimized in-circuit assertions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call