Abstract

Wireless applications such as WLAN, GSM, DECT, GPS,... require low-cost and low-power transceivers. Moreover, a high flexibility is required when wireless terminals will have to cope simultaneously with several standards. To achieve this, while maintaining high performance, the possibilities of analog and digital signal processing need to be combined in an optimal way during the realization of a transceiver. This is only possible when system designers can efficiently study tradeoffs between analog and digital. Making such tradeoffs is too complicated for pen-and-paper analysis. Instead, efficient simulation of mixed-signal architectures with detailed models for the different building blocks is required. This paper discusses high-level modeling and simulation approaches for mixed-signal telecom front-ends. Comparisons to commercial high-level simulations show an important reduction of the CPU times of typical high-level simulations of telecom transceivers such as bit-error-rate computations. This efficient simulation approach together with the accurate modeling tools, that include substrate noise coupling, form an interesting suite of tools for advanced architectural studies of mixed-signal telecom systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.