Abstract

BackgroundProduction of biodiesel from non-edible oils is receiving increasing attention. Tung oil, called “China wood oil” is one kind of promising non-edible biodiesel oil in China. To our knowledge, tung oil has not been used to produce biodiesel by enzymatic method. The enzymatic production of biodiesel has been investigated extensively by using Rhizopus oryzae lipase as catalyst. However, the high cost of R. oryzae lipase remains a barrier for its industrial applications. Through different heterologous expression strategies and fermentation techniques, the highest expression level of the lipase from R. oryzae reached 1334 U/mL in Pichia pastoris, which is still not optimistic for industry applications.ResultsThe prosequence of lipases from Rhizopus sp. is very important for the folding and secretion of an active lipase. A chimeric lipase from R. oryzae was constructed by replacing the prosequence with that from the R. chinensis lipase and expressed in P. pastoris. The maximum activity of the chimera reached 4050 U/mL, which was 11 fold higher than that of the parent. The properties of the chimera were studied. The immobilized chimera was used successfully for biodiesel production from tung oil, which achieved higher FAME yield compared with the free chimeric lipase, non-chimeric lipase and mature lipase. By response surface methodology, three variables, water content, methanol to tung oil molar ratio and enzyme dosage were proved to be crucial parameters for biosynthesis of FAME and the FAME yield reached 91.9±2.5% at the optimized conditions by adding 5.66 wt.% of the initial water based on oil weight, 3.88 of methanol to tung oil molar ratio and 13.24 wt.% of enzyme concentration based on oil weight at 40°C.ConclusionsThis is the first report on improving the expression level of the lipase from R. oryzae by replacing prosequences. The immobilized chimera was used successfully for biodiesel production from tung oil. Using tung oil as non-edible raw material and a chimeric lipase from R. oryzae as an economic catalyst make this study a promising one for biodiesel applications.

Highlights

  • Production of biodiesel from non-edible oils is receiving increasing attention

  • We noticed a big gap between the expression level of the R. chinensis lipase (RCL) and the R. oryzae lipase

  • The deviation of the prosequences between RCL and Rhizopus oryzae lipase (ROL) let us come up with an idea to construct a chimeric lipase from R. oryzae by replacing the prosequence with that from R. chinensis lipase in order to improve the expression level of the lipase from R. oryzae

Read more

Summary

Results

The prosequence of lipases from Rhizopus sp. is very important for the folding and secretion of an active lipase. The prosequence of lipases from Rhizopus sp. Is very important for the folding and secretion of an active lipase. The maximum activity of the chimera reached 4050 U/mL, which was 11 fold higher than that of the parent. The immobilized chimera was used successfully for biodiesel production from tung oil, which achieved higher FAME yield compared with the free chimeric lipase, non-chimeric lipase and mature lipase. Three variables, water content, methanol to tung oil molar ratio and enzyme dosage were proved to be crucial parameters for biosynthesis of FAME and the FAME yield reached 91.9±2.5% at the optimized conditions by adding 5.66 wt.% of the initial water based on oil weight, 3.88 of methanol to tung oil molar ratio and 13.24 wt.% of enzyme concentration based on oil weight at 40°C

Conclusions
Background
Results and discussion
Conclusion
Methods
34. Sheldon RA: Enzyme immobilization
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.