Abstract

Enterococci have gained attention during the past decade as important nosocomial pathogens. Their increasing prevalence has been paralleled by the occurrence of multidrug-resistant and high-level aminoglycoside-resistant strains. This study isolated Enterococcus spp. from hospital samples and determined their antibiotic resistance profile, focusing on aminoglycosides, and associated resistance mechanisms. A total of 195 enterococci from hospital samples in Tehran were studied. Isolates were identified by biochemical reactions. Antimicrobial resistance was determined by disk diffusion. The vancomycin MIC for vancomycin-resistant isolates was determined by agar dilution. Detection of aminoglycoside resistance genes and intI1 and intI2 gene was performed by PCR. The majority of isolates were Enterococcus faecalis (65.1%), followed by Enterococcus faecium (31.8%), Enterococcus gallinarum (2.6%) and Enterococcus solitarius (0.5%). According to antibiogram results, 42.1% of isolates were high-level gentamicin-resistant (HLGR) and 40.5% were high-level streptomycin-resistant (HLSR). There was a high prevalence of aac(6')-Ie-aph(2")-Ia (96.3%) among HLGR isolates. ant(6)-Ia and aadA were identified in 93.7% and 64.6% of HLSR isolates, respectively. aph(2'')-Ic was detected in 7 isolates (3.6%) and aph(2'')-Ib in only 4 isolates (2.1%); no isolates harboured aph(2'')-Id, intI1 or intI2. Multidrug resistance was higher among HLGR and HLSR isolates compared with non-HLGR and non-HLSR isolates, which may result in limited treatment options. More than 50% of isolates were susceptible to aminoglycosides, thus correct identification in clinical laboratories and administration of these antibiotics can result in decreased used of antibiotics such as vancomycin and linezolid and help to reduce the emergence of resistance to these drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call