Abstract

The Kozai mechanism often destabilizes high-inclination orbits. It couples changes in the eccentricity and inclination, and drives high inclination, circular orbits to low inclination, eccentric orbits. In a recent study of the dynamics of planetesimals in the quadruple star system HD 98800, there were significant numbers of stable particles in circumbinary polar orbits about the inner binary pair which are apparently able to evade the Kozai instability. Here, we isolate this feature and investigate the dynamics through numerical and analytical models. The results show that the Kozai mechanism of the outer star is disrupted by a nodal libration induced by the inner binary pair on a shorter time-scale. By empirically modelling the period of the libration, a criteria for determining the high-inclination stability limits in general triple systems is derived. The nodal libration feature is interesting and, although affecting inclination and node only, shows many parallels to the Kozai mechanism. This raises the possibility that high-inclination planets and asteroids may be able to survive in multistellar systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call