Abstract

AbstractLocating the faulty section of a high‐impedance fault (HIF) is quite challenging for the underground distribution network of a power system. The complexity of the distribution network, such as branches, nonhomogenous lines, and HIF, contributes to the difficulties in locating the faulty section. In this paper, the shortest distance (SD) technique and a database approach have been proposed to determine the faulty section. A multiresolution analysis based on discrete wavelet transforms is chosen to extract the unique features from voltage signals during the HIF event. The output coefficients from the decomposition process is stored in a database and used as the input data for the SD algorithm. The first, second, and third level of detailed coefficients of the post‐disturbance voltage signal were utilized for the identification of the faulty section using the proposed method. A ranking analysis was created to provide a number of possibilities of faulty section. In this paper, a 38‐node underground distribution network system in a national grid in Malaysia was modeled using the PSCAD software. The proposed method was able to successfully determine the faulty section. © 2013 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.