Abstract

Understanding high-order harmonic generation (HHG) from solid targets holds the key of potential technological innovations in the field of high-frequency coherent sources. Solids present optical nonlinearities at lower driving intensities, and harmonics can be efficiently emitted due to the increased electron density in comparison with the atomic and molecular counterparts. In addition, crystalline solids introduce a new complexity, as symmetries play a role in the anisotropic character of the optical response. An extraordinary playground is, therefore, the scenario in which solids are driven by vector beams, since crystal symmetries can be directly coupled with the topology of the driving laser beam. In this contribution we analyze the topological properties of the HHG radiation emitted by a single-layer graphene sheet driven by a vector beam. We show that the harmonic field is a complex combination of vortices, whose geometrical properties hold information about the details of the non-linear response of the crystal. We demonstrate, therefore, that the analysis of the topological structure of the harmonic field can be used as a spectroscopic measurement technique, paving the way of topological spectroscopy as a new strategy for the characterization of the optical response of macroscopic targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call