Abstract

Three-dimensional topological insulators are a phase of matter that hosts unique spin-polarized gapless surface states that are protected by time-reversal symmetry. They exhibit unconventional charge and spin transport properties1,2. Intense laser fields can drive ballistic charge dynamics in Dirac bands3,4 or they can coherently steer spin5 and valley pseudospin6. Similarly, high-harmonic generation (HHG) in solids provides insights into the dynamics of the electrons in topological insulators7–13. Despite several theoretical attempts to identify a topological signature in the high-harmonic spectrum14–16, a unique fingerprint has yet to be found experimentally. Here, we observe HHG that arises from topological surface states in the intrinsic topological insulator BiSbTeSe2. The components of the even-order harmonics that are polarized along the pump polarization stem from the spin current in helical surface states, whereas the perpendicular components originate from the out-of-plane spin polarization related to the hexagonal wrapping effect17. The dependence of HHG on surface doping in ambient air also suggests the presence of a Rashba-split two-dimensional electron gas, whose strength can be enhanced by an increase in the intensity of the mid-infrared pump. High-harmonic generation up to the seventh harmonic is observed from the intrinsic three-dimensional topological insulator BiSbTeSe2. The parallel components of the even-order harmonics arise directly from the topological surface states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call