Abstract

Two-dimensional materials offer a versatile platform to study high-harmonic generation (HHG), encompassing as limiting cases bulk-like and atomic-like harmonic generation [Tancogne-Dejean and Rubio, Science Advance \textbf{4}, eaao5207 (2018)]. Understanding the high-harmonic response of few-layer semiconducting systems is important, and might open up possible technological applications. Using extensive first-principle calculations within a time-dependent density functional theory framework, we show how the in-plane and out-of-plane nonlinear non-perturbative response of two-dimensional materials evolve from the monolayer to the bulk. We illustrate this phenomenon for the case of multilayer hexagonal BN layered systems. Whereas the in-plane HHG is found not to be strongly altered by the stacking of the layers, we found that the out-of-plane response is strongly affected by the number of layers considered. This is explained by the interplay between the induced electric field by electron-electron interactions and the interlayer delocalization of the wave-functions contributing most to the HHG signal. The gliding of a bilayer is also found to affect the high-harmonic emission. Our results will have important ramifications for the experimental study of monolayer and few-layer two-dimensional materials beyond the case of hexagonal BN studied here as the result we found arew generic and applicable to all 2D semiconducting multilayer systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call