Abstract
Intensification of chemical processes leads to significantly smaller equipment with a considerable reduction in holdup of liquids and gases, thus reducing the impact of chemical hazards. Also, different, more expensive, construction materials and specialty coatings can be used, thereby increasing safety and durability of equipment. Additionally, the waste production can be reduced as a result of the higher mixing efficiency and better control of chemical conversion processes, which reduces environmental impact and increases resource efficiency. The thin-film spinning disc (TFSD), the rotor–stator spinning disc (RSSD), and a combination of these, are highly attractive for highly reactive, exothermic reactions in multiphase systems. A barrier for industrial application is its success: demonstration requires hazardous chemicals in large quantities and flows and is not easily done in university laboratories. A piloting facility with sufficient resources is needed where this and other process intensification equipment can be safely tested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.