Abstract

This paper proposes a principle of high-resolution sensorless position estimation for a switched reluctance motor (SRM) drive, using either flux linkage or current to correct for errors in rotor position. The estimation algorithm makes full use of the nonlinear magnetic characteristics of the SRM through correlation of current, flux linkage and rotor position. The estimation model is simple, but with no loss in accuracy, leading to few real-time computations. Furthermore, a criterion is proposed to choose the phase most suited for position estimation when more than one phase conducts. The algorithm can also correct the predicted flux linkage, which, in turn, may be used to further correct the position estimate, and the features hereof are discussed. Simulations, real-time implementation and experimental results using the algorithm are presented, and confirm the concept.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.