Abstract
Polyesters with a high glass transition temperature above 130 °C were obtained from limonene oxide (LO) or vinylcyclohexene oxide (VCHO) and phthalic anhydride (PA) in the presence of commercial salen-type complexes with different metals-Cr, Al, and Mn-as catalysts in combination with 4-(dimethylamino) pyridine (DMAP), bis-(triphenylphosphorydine) ammonium chloride (PPNCl), and bis-(triphenylphosphoranylidene)ammonium azide (PPNN3) as cocatalysts via alternating ring-opening copolymerization (ROCOP). The effects of the time of precontact between the catalyst and cocatalyst and the polymerization time on the productivity, molar mass (Mw), and glass transition temperature (Tg) were evaluated. The polyesters were characterized by a molar mass (Mw) of up to 14.0 kg/mol, a narrow dispersity Tg of up to 136 °C, and low (<3 mol%) polyether units. For poly(LO-alt-PA) copolymers, biodegradation tests were performed according to ISO 14851 using the respirometric biochemical oxygen demand method. Moreover, the vinyl double bond present in the poly(LO-alt-PA) copolymer chain was functionalized using three different thiols, methyl-3-mercaptopropionate, isooctyl-3-mercaptopropionate, and butyl-3-mercaptopropionate, via a click chemistry reaction. The thermal properties of poly(LO-alt-PA), poly(VCHO-alt-PA) and thiol-modified poly(LO-alt-PA) copolymers were extensively studied by DSC and TGA. Some preliminary compression molding tests were also conducted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.