Abstract

The high-frequency performance of transistors is usually assessed by speed and gain figures of merit, such as the maximum oscillation frequency fmax, cutoff frequency fT, ratio fmax/fT, forward transmission coefficient S21, and open-circuit voltage gain Av. All these figures of merit must be as large as possible for transistors to be useful in practical electronics applications. Here we demonstrate high-performance graphene field-effect transistors (GFETs) with a thin AlOx gate dielectric which outperform previous state-of-the-art GFETs: we obtained fmax/fT > 3, Av > 30 dB, and S21 = 12.5 dB (at 10 MHz and depending on the transistor geometry) from S-parameter measurements. A dc characterization of GFETs in ambient conditions reveals good current saturation and relatively large transconductance ~600 S/m. The realized GFETs offer the prospect of using graphene in a much wider range of electronic applications which require substantial gain.

Highlights

  • The high-frequency performance of transistors is usually assessed by speed and gain figures of merit, such as the maximum oscillation frequency fmax, cutoff frequency fT, ratio fmax/fT, forward transmission coefficient S21, and open-circuit voltage gain Av

  • This low output conductance contributed to a large ratio between the extrinsic maximum oscillation frequency and cutoff frequency of ~3, which is unusually high for graphene field-effect transistors (GFETs), in which fmax/fT typically

  • All GFETs were initially characterized at dc to find the optimum biasing conditions for the S-parameter characterization

Read more

Summary

Drain uLu

Ranges from

Results and Discussion
Conclusion
Author Contributions
Additional Information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.