Abstract

Volume and boundary acoustic backscatter envelope fluctuations are characterized from data collected by the Toroidal Volume Search Sonar (TVSS), a 68 kHz cylindrical array capable of 360 degrees multibeam imaging in the vertical plane perpendicular to its axis. The data are processed to form acoustic backscatter images of the seafloor, sea surface, and horizontal and vertical planes in the volume, which are used to attribute nonhomogeneous spatial distributions of zooplankton, fish, bubbles and bubble clouds, and multiple boundary interactions to the observed backscatter amplitude statistics. Three component Rayleigh mixture probability distribution functions (PDFs) provided the best fit to the empirical distribution functions of seafloor acoustic backscatter. Sea surface and near-surface volume acoustic backscatter PDFs are better described by Rayleigh mixture or log-normal distributions, with the high density portion of the distributions arising from boundary reverberation, and the tails arising from nonhomogeneously distributed scatterers such as bubbles, fish, and zooplankton. PDF fits to the volume and near-surface acoustic backscatter data are poor compared to PDF fits to the boundary backscatter, suggesting that these data may be better described by mixture distributions with component densities from different parametric families. For active sonar target detection, the results demonstrate that threshold detectors which assume Rayleigh distributed envelope fluctuations will experience significantly higher false alarm rates in shallow water environments which are influenced by near-surface microbubbles, aggregations of zooplankton and fish, and boundary reverberation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.