Abstract
Circular and annular elastic plates have wide applications as essential elements in various engineering structures and products demanding accurate analysis of their vibrations. At higher frequencies, the analysis of vibrations needs appropriate equations, as shown by the Mindlin plate equations for rectangular plates with tailored applications for the analysis of quartz crystal resonators. Naturally, there are equally strong demands for the equations and applications in circular and annular plates with the consideration of higher-order vibration modes. By following the procedure established by Mindlin based on displacement expansion in the thickness coordinate, a set of higher-order equations of vibrations of circular and annular plates are derived and truncated for comparisons with classical and first-order plate equations of circular plates. By utilizing these equations, coupled thickness-shear and flexural vibrations of circular and annular plates are analyzed for vibration frequencies and mode shapes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.