Abstract

A screen-printed PZT thick film with a final thickness of about 40 microm was deposited on a porous PZT substrate to obtain an integrated structure for ultrasonic transducer applications. This process makes it possible to decrease the number of steps in the fabrication of high-frequency, single-element transducers. The porous PZT substrates allow high acoustic impedance and attenuation to be obtained, satisfying transducer backing requirements for medical imaging. The piezoelectric thick films deliver high electromechanical performance, comparable to that of standard bulk ceramics (thickness coupling factor over 45%). Based on these structures, high-frequency transducers with a center frequency of about 25 MHz were produced and characterized. As a result, good sensitivity and axial resolution were obtained in comparison with similar transducers integrating a lead titanate (PT) disk as active material. The two transducers were integrated into a high-frequency imaging system, and comparative skin images are shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.