Abstract

The efficient plant regeneration system from embryogenic cell suspension cultures of Gynura procumbens (Lour.) Merr. is described. Leaf, stem and petiole explants were cultured on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) in various concentrations (0, 0.1, 0.3, 1.0 and 3.0 mg l−1). Leaf, stem and petiole explants formed pale-yellow nodular callus and off-white calluses at a frequency of 100% when cultured on MS medium supplemented with more than 1 mg l−1 of 2,4-D after 4 weeks incubation. However, only 20% of pale-yellow nodular callus derived from petiole explants developed into white embryonic structures. Upon transfer to MS basal medium without growth regulators, these white embryonic structures differentiated into somatic embryos. Embryogenic cell suspension cultures were initiated from petiole-derived pale-yellow nodular calluses. More than 73.2% of regenerated plantlets via somatic embryogenesis produced roots on MS medium supplemented with 0.1 mg l−1 α-naphthaleneacetic acid and 1 mg l−1 indole-3-butyric acid (IBA), respectively. Rooted plantlets were successfully transplanted to soil mixture of sterile vermiculite and potting soil (1:1) and grown to maturity in a growth chamber, achieving a survival rate of > 95%. The plant regeneration system from embryogenic cell suspension cultures of G. procumbens established in this study could be applied as an alternative for mass proliferation as well as molecular breeding for quality improvement of G. procumbens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call