Abstract
To develop an in vitro regeneration system to increase the recovery of Carum copticum L. plantlets as a part of developing a metabolic engineering program. The efficacy of different concentrations and combinations of 6-benzyladenine, indole-3-acetic acid and indole butyric acid on direct shoot regeneration and rooting of ajowan from apical bud explants were assessed. All explants were cultured on Murashige and Skoog (MS) medium supplemented with different combinations of 6-benzyl amino purine (BAP) (0, 2.2, 4.4, 8.8 µmol/L) and indole-3-acetic acid (IAA) (0, 0.5, 1.1, 2.2 µmol/L). The maximum shoot regeneration frequency (97.5%) and the highest number of shoots produced from apical buds (34 shoots per explant) were obtained on MS medium fortified with BAP (4.4 µmol/L) and IAA (0.5 µmol/L). Low shoot regeneration frequency was observed in BAP free treatments. The effects of different strengths of MS medium and various concentrations of IAA and indole-3- butyric acid on rooting rate, length and average number of roots were also investigated. Application of indole-3- butyric acid (6 µmol/L) in full-strength MS medium, was more effective than IAA and resulted in highest shoot regeneration frequency with the rooting rate of 100% and highest mean number of roots per shoot (41.8). The rooted plantlets were acclimatized successfully in greenhouse conditions with a survival rate of 90%. In this study, a simple and reliable regeneration and acclimatization protocol for Carum copticum has been presented. This protocol can be found very advantageous for a variety of purposes, including mass multiplication of Carum species, medicinal plant breeding studies and transgenic plant production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.