Abstract

AbstractNorthward flow of Antarctic Bottom Water (AABW) across the Southern Ocean comprises a key component of the global overturning circulation. Yet AABW transport remains poorly constrained by observations and state estimates, and there is presently no means of directly monitoring any component of the Southern Ocean overturning. However, AABW flow is dynamically linked to Southern Ocean surface circulation via the zonal momentum balance, offering potential routes to indirect monitoring of the transport. Exploiting this dynamical link, this study shows that wind stress (WS) fluctuations drive large AABW transport fluctuations on time scales shorter than 2 years, which comprise almost all of the transport variance. This connection occurs due to differing time scales on which topographic and interfacial form stresses respond to wind variability, likely associated with differences in barotropic versus baroclinic Rossby wave propagation. These findings imply that AABW transport variability can largely be reconstructed from the surface WS alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.