Abstract

PurposeTo establish high‐frequency magnetic resonance electrical properties tomography (MREPT) as a novel contrast mechanism for the assessment of glioblastomas using a rat brain tumor model.MethodsSix F98 intracranial tumor bearing rats were imaged longitudinally 8, 11 and 14 days after tumor cell inoculation. Conductivity and mean diffusivity maps were generated using MREPT and Diffusion Tensor Imaging. These maps were co‐registered with T2‐weighted images and volumes of interests (VOIs) were segmented from the normal brain, ventricles, edema, viable tumor, tumor rim, and tumor core regions. Longitudinal changes in conductivity and mean diffusivity (MD) values were compared in these regions. A correlation analysis was also performed between conductivity and mean diffusivity values.ResultsThe conductivity of ventricles, edematous area and tumor regions (tumor rim, viable tumor, tumor core) was significantly higher (P < .01) compared to the contralateral cortex. The conductivity of the tumor increased over time while MD from the tumor did not change. A marginal positive correlation was noted between conductivity and MD values for tumor rim and viable tumor, whereas this correlation was negative for the tumor core.ConclusionWe demonstrate a novel contrast mechanism based on ionic concentration and mobility, which may aid in providing complementary information to water diffusion in probing the microenvironment of brain tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.