Abstract

To accommodate for high flexion, new total knee arthroplasties (TKAs) have been designed. Unlike older designs which have been found to exhibit decreasing contact area with increasing flexion, we hypothesized the new designs would be associated with improved contact mechanics. We compared in vivo contact mechanics for 10 subjects having a fixed-bearing high-flexion posterior-stabilized (LPS-Flex) TKA and 10 subjects having a fixed-bearing high-flexion posterior cruciate-retaining (CR-Flex) TKA. All subjects performed deep knee bends to maximum flexion while under fluoroscopic surveillance. In vivo kinematics obtained using a three-dimensional to two-dimensional registration technique, were input into a three-dimensional inverse dynamic mathematical model to determine the contact forces. The contact areas and contact stresses were determined using a deformable contact model. The contact forces, contact areas, and contact stresses in both these implants increased with increasing flexion. The medial contact area in the LPS-Flex was higher than the CR-Flex for most of the flexion cycle. The lateral contact area was higher in the CR-Flex than the LPS-Flex in early and midflexion ranges. Although the lateral contact stresses were similar in both implants, the CR-Flex experienced higher medial contact stress than the LPS-Flex throughout flexion. However, both these implants were able to maintain sufficient contact area so the contact stress values were well below the yield strength of crosslinked polyethylene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call