Abstract

In high temperature (high T c ) cuprate superconductors the gap in the electronic density of states is not fully filled at T c ; it evolves into a partial (pseudo)gap that survives way beyond T c , challenging the conventional views. We have investigated the pseudogap phenomenon in the field-temperature (H-T) diagram of Bi2Sr2CaCu2O8 + y over a wide range of hole doping ( $0.10 \leq p \leq 0.225$ ). Using interlayer tunneling transport in magnetic fields up to 60 T to probe the density-of states (DOS) depletion at low excitation energies we mapped the pseudogap closing field H pg . We found that H pg and the pseudogap onset temperature T * are related via a Zeeman relation $g\mu_BH_{pg} \approx k_BT^*$ , irrespective of whether the magnetic field is applied along the c-axis or parallel to CuO2 planes. In contrast to large anisotropy of the superconducting state, the field anisotropy of H pg is due solely to the g-factor. Our findings indicate that the pseudogap is of singlet-spin origin, consistent with models based on doped Mott insulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.