Abstract

Piezoelectric actuators normally have complicated structures and work under severe loading conditions, e.g., high driving electric field and significant compressive preload. This study is focused on the experimental investigation of the electromechanical properties of a commercial soft lead zirconate titanate material under loading conditions simulating the in-service environment of high-strain actuators. The polarization and strain responses were first measured under a constant-stress preload. A significant enhancement of the dielectric and piezoelectric performance is observed within a small prestress range. At much higher preload levels, the predominant mechanical depolarization effect makes the material exhibits hardly any piezoeffect. In the other two series of tests, the specimen was subjected to cyclic mechanical load with different mean stresses and amplitudes. When the stress is applied in-phase with electrical loading, the polarization and strain outputs are found to monotonically decrease with an increase in stress amplitude, until mechanical loading completely impedes the piezoelectric response. An inverse effect occurs for the out-of-phase electromechanical loading tests, in which the polarization and strain outputs increase with increasing stress amplitude. In general, the enhanced polarization and strain responses are accompanied by an unfavorable increased hysteresis and, consequently, increased energy loss. An attempt has been made to explain the experimental findings by simultaneously taking into account the effects of dielectric response, elastic deformation, irreversible domain switching, and piezoeffects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.