Abstract

The exciplex-pumped alkali laser (XPAL) system has been demonstrated in mixtures of Cs vapour, Ar, and ethane by pumping Cs–Ar atomic collision pairs and subsequent dissociation of diatomic, electronically excited CsAr molecules (exciplexes or excimers). Because of the addition of atomic collision pairs and exciplex states, modelling of the XPAL system is far more complicated than the modelling of the classic diode-pumped alkali laser (DPAL). In this paper, we discuss BLAZE-V time-dependent multi-dimensional modelling of this new laser system including radiative transport and parasitic loss effects. A two-dimensional, time-dependent baseline simulation of a pulsed XPAL is presented and compared to data. Good agreement is achieved on a laser pulse full width at half-maximum and laser pulse rise time. Parametric simulations of pulsed XPAL system configurations similar to that of the baseline case, given both four- and five-level laser operation, are presented in which good agreement is obtained with outcoupled laser energy as a function of absorbed pump energy data. The potential impact of parasitic losses on modelled system configurations is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call