Abstract
An experimentally validated micro-scale analysis of the visco-thermo-mechanical behavior of polymer matrix composites under different loads is proposed. A new constitutive law for the matrix material is developed taking into account the pressure dependence of the material as well as strain-rate and temperature dependence. Capturing the matrix behavior under multi-axial stress states is concluded to be essential to accurately predict the composite material behavior, even when considering simple load cases such as transverse compression and/or shear. Without any calibration procedure at the composite level, good agreement with the experimental data is observed for different loading conditions, including strain-rate dependency.Using this validated micro-scale model, a three-dimensional simulation of the formation of a kink band under longitudinal compression of the composite is conducted. A new evidence at micro-scale is found supporting the hypothesis that shear stresses transferred between fibers and matrix are particularly important in the formation of the kink band.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.