Abstract

Ship trajectory from automatic identification system (AIS) provides crucial kinematic information for various maritime traffic participants (ship crew, maritime officials, shipping company, etc.), which greatly benefits the maritime traffic management in real-world. In that manner, ship trajectory smoothing and prediction attracts significant attentions in the maritime traffic community. To address the issue, an ensemble machine learning framework is proposed to remove outliers in the raw AIS data and predict ship trajectory variation tendency. Our method is verified on three typical ship trajectory segments, which is compared against other ship trajectory prediction models. The experimental results suggested that our proposed framework obtained higher prediction accuracy compared to the common trajectory prediction models in terms of typical error measurement indicators. The research findings can help maritime traffic participants obtain high-fidelity ship trajectory data, which supports making more reasonable traffic-controlling decisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.