Abstract

IntroductionIncreasing obesity and type 2 diabetes, in part due to the high-fat (HF) Western diet, parallels an increased incidence of osteoarthritis (OA). This study was undertaken to establish a causal relation between the HF diet and accelerated OA progression in a mouse model and to determine the relative roles of weight gain and metabolic dysregulation in this progression.MethodsFive-week-old C57BL/6 mice were placed on HF (60% kcal) or low-fat (lean, 10% kcal) diets for 8 or 12 weeks before transecting the medial collateral ligament and excising a segment of the medial meniscus of the knee to initiate OA. One group was switched from lean to HF diet at the time of surgery.ResultsBody weight of mice on the HF diet peaked at 45.9 ± 2.1 g compared with 29.9 ± 1.8 g for lean diets, with only those on the HF becoming diabetic. Severity of OA was greater in HF mice, evidenced by the Osteoarthritis Research Society International (OARSI) histopathology initiative scoring method for mice and articular cartilage thickness and area. To assess the importance of weight gain, short- and long-term HF diets were compared with the lean diet. Short- and long-term HF groups outweighed lean controls by 6.2 g and 20.5 g, respectively. Both HF groups became diabetic, and OA progression, evidenced by increased OARSI score, decreased cartilage thickness, and increased osteophyte diameter, was comparably accelerated relative to those of lean controls.ConclusionsThese results demonstrate that the HF diet accelerates progression of OA in a type 2 diabetic mouse model without correlation to weight gain, suggesting that metabolic dysregulation is a comorbid factor in OA-related cartilage degeneration.

Highlights

  • Increasing obesity and type 2 diabetes, in part due to the high-fat (HF) Western diet, parallels an increased incidence of osteoarthritis (OA)

  • Fasting blood glucose levels were in the diabetic range only for the HF group (182.3 ± 10.5 mg/dl; Figure 1B), confirming a dysmetabolic state associated with the HF diet

  • With the objective to determine whether the HF diet with its associated type 2 diabetic phenotype accelerates OA progression, mice from each dietary group (n = 4 to 9) were killed at monthly intervals out to 4 months after meniscal/ligamentous injury (MLI) surgery

Read more

Summary

Introduction

Increasing obesity and type 2 diabetes, in part due to the high-fat (HF) Western diet, parallels an increased incidence of osteoarthritis (OA). As consumed in Western diets, can contribute to both obesity and the metabolic dysfunction that is associated with insulin resistance/type 2 diabetes. The current model of insulin resistance of obesity as a proinflammatory state is based in part on the observation that adipose tissue in obese individuals and animal models contains increased numbers of activated macrophages that release proinflammatory cytokines such as interleukin-1, interleukin-6, and tumor necrosis factor-a [12,13]. These cytokines act both locally on adipocytes and systemically to impair insulin action in insulin-target tissues [11,14,15]. The net effect of the proinflammatory state and tissue oxidative stress is a systemic metabolic dysfunction that defines the metabolic syndrome and type 2 diabetes that are associated with high-fat diets and obesity

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call