Abstract
The electronic structure of rubrene single crystals was studied by angle-resolved ultraviolet photoelectron spectroscopy. A clear energy dispersion of the highest occupied molecular orbital-derived band was observed, and the dispersion width was found to be 0.4 eV along the well-stacked direction. The effective mass of the holes was estimated to be 0.65(+/-0.1)m0. The present results suggest that the carrier conduction mechanism in rubrene single crystals can be described within the framework of band transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.