Abstract

High field MRI systems, such as 7 Tesla (T) scanners, can deliver higher signal to noise ratio (SNR) than lower field scanners and thus allow for the acquisition of data with higher spatial resolution, which is often demanded by users in the fields of clinical and neuroscientific imaging. However, high resolution scans may require long acquisition times, which in turn increase the discomfort for the subject and the risk of subject motion. Even with a cooperative and trained subject, involuntary motion due to heartbeat, swallowing, respiration and changes in muscle tone can cause image artifacts that reduce the effective resolution. In addition, scanning with higher resolution leads to increased sensitivity to even very small movements. Prospective motion correction (PMC) at 3T and 7T has proven to increase image quality in case of subject motion. Although the application of prospective motion correction is becoming more popular, previous articles focused on proof of concept studies and technical descriptions, whereas this paper briefly describes the technical aspects of the optical tracking system, marker fixation and cross calibration and focuses on the application of PMC to very high resolution imaging without intentional motion. In this study we acquired in vivo MR images at 7T using prospective motion correction during long acquisitions. As a result, we present images among the highest, if not the highest resolution of in vivo human brain MRI ever acquired.

Highlights

  • High resolution MRIUltra High Field (UHF) MRI has become increasingly available for fields such as biology, neuroscience or diagnostic imaging

  • The images acquired without motion correction show significant motion artifacts and blurring

  • We present in vivo data with effective resolutions which are very difficult if not impossible to acquire without motion correction during very long scans

Read more

Summary

Introduction

Ultra High Field (UHF) MRI has become increasingly available for fields such as biology, neuroscience or diagnostic imaging. Its benefits are an increased SNR and the potentially higher resolution showing a high level of anatomical detail. As MRI is non-invasive, the new developments for high-resolution imaging could be used for non-invasive in vivo brain MRI histology, impossible to obtain with traditional histology. Highest Resolution MRI Using Prospective Motion Correction data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call