Abstract

We discuss general properties of higher-spin gauge theories paying particular attention to specificities of higher-spin gauge interactions of massive matter fields in 2+1 dimensional space-time. The main conclusions are that the parameter of mass M appears as a module characterizing an appropriate vacuum solution of the full non-linear model and that M affects a structure of a global vacuum higher-spin symmetry which leaves invariant the chosen vacuum solution. Special attention is paid to local Lorentz symmetry as a guiding principle which fixes a form of non-linear higher-spin equations formulated as some zero-curvature conditions supplemented with non-linear constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.