Abstract

We formulate a new class of tensor gauge field theories in any dimension that is a hybrid class between symmetric higher-rank tensor gauge theory (i.e., higher-spin gauge theory) and anti-symmetric tensor topological field theory. Our theory describes a mixed unitary phase interplaying between gapless and gapped topological order phases (which can live with or without Euclidean, Poincaré, or anisotropic symmetry, at least in ultraviolet high or intermediate energy field theory, but not yet to a lattice cutoff scale). The “gauge structure” can be compact, continuous, abelian or non-abelian. Our theory sits outside the paradigm of Maxwell electromagnetic theory in 1865 and Yang–Mills isospin/color theory in 1954. We discuss its local gauge transformation in terms of the ungauged vector-like or tensor-like higher-moment global symmetry. The non-abelian gauge structure is caused by gauging the non-commutative symmetries: a higher-moment symmetry and a charge conjugation (particle–hole) symmetry. Vector global symmetries along time direction may exhibit time crystals. We explore the relation of these long-range entangled matters to a non-abelian generalization of Fracton order in condensed matter, a field theory formulation of foliation, the spacetime embedding and Embeddon that we newly introduce, and possible fundamental physics applications to dark matter or dark energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call