Abstract

A study on the development of high-power supercapacitor materials based on formation of thick mesoporous MnO2 shells on a highly conductive 3D template using vertically aligned carbon nanofibers (VACNFs). Coaxial manganese shells of 100 to 600 nm nominal thicknesses are sputter-coated on VACNFs and then electrochemically oxidized into rose-petal-like mesoporous MnO2 structure. Such a 3D MnO2/VACNF hybrid architecture provides enhanced ion diffusion throughout the whole MnO2 shell and yields excellent current collection capability through the VACNF electrode. These two effects collectively enable faster electrochemical reactions during charge-discharge of MnO2 in 1 M Na2SO4. Thick MnO2 shells (up to 200 nm in radial thickness) can be employed, giving a specific capacitance up to 437 F g(-1). More importantly, supercapacitors employing such a 3D MnO2/VACNF hybrid electrode illustrate more than one order of magnitude higher specific power than the state-of-the-art ones based on other MnO2 structures, reaching ∼240 kW kg(-1), while maintaining a comparable specific energy in the range of 1 to 10 Wh kg(-1). This hybrid approach demonstrates the potential of 3D core-shell architectures for high-power energy storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call