Abstract

AbstractThe extended finite element method (XFEM) enables the accurate approximation of solutions with jumps or kinks within elements. Optimal convergence rates have frequently been achieved for linear elements and piecewise planar interfaces. Higher‐order convergence for arbitrary curved interfaces relies on two major issues: (i) an accurate quadrature of the Galerkin weak form for the cut elements and (ii) a careful formulation of the enrichment, which should preclude any problems in the blending elements. For (i), we employ a strategy of subdividing the elements into subcells with only one curved side. Reference elements that are higher‐order on only one side are then used to map the integration points to the real element. For (ii), we find that enrichments for strong discontinuities are easily extended to higher‐order accuracy. In contrast, problems in blending elements may hinder optimal convergence for weak discontinuities. Different formulations are investigated, including the corrected XFEM. Numerical results for several test cases involving strong or weak curved discontinuities are presented. Quadratic and cubic approximations are investigated. Optimal convergence rates are achieved using the standard XFEM for the case of a strong discontinuity. Close‐to‐optimal convergence rates for the case of a weak discontinuity are achieved using the corrected XFEM. Copyright © 2009 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.